Suppose we divide a natural number a by a positive natural number b. If a is divisible by b, then we obtain a quotient q that is a natural number. Namely, $a = q \cdot b$, with $q \in \mathbb{N}$.

If a is not divisible by b, then division is defined as follows. Consider the two consecutive integer multiples of b that satisfy

$$q \cdot b \leq a < (q + 1) \cdot b.$$

The quotient is defined to be q. The remainder is defined to be

$$r \triangleq a - q \cdot b.$$

Clearly, $0 \leq r < b$. Note that the quotient q simply equals $\left\lfloor \frac{a}{b} \right\rfloor$.

Notation: Let $(a \mod b)$, $\text{mod}(a, b)$, $a(\mod b)$ denote the remainder obtained by dividing a by b.

\[\text{Division and Modulo} \]
Examples

1. \(3 \mod 5 = 3\) and \(5 \mod 3 = 2\).
2. \(999 \mod 10 = 9\) and \(123 \mod 10 = 3\).
3. \(a \mod 2\) equals 1 if \(a\) is odd, and 0 if \(a\) is even.
4. \(a \mod b \geq 0\).
5. \(a \mod b \leq b - 1\).
Lemma

For every $z \in \mathbb{Z}$,

$$x \mod b = (x + z \cdot b) \mod b$$

Lemma

$$((x \mod b) + (y \mod b)) \mod b = (x + y) \mod b$$
Definition

A binary string is a finite sequence of bits.

Ways to denote strings:

1. sequence $\{A_i\}_{i=0}^{n-1}$,
2. vector $A[0 : n - 1]$, or
3. \vec{A} if the indexes are known.

We often use $A[i]$ to denote A_i.
- $A[0 : 3] = 1100$ means $A_0 = 1$, $A_1 = 1$, $A_2 = 0$, $A_3 = 0$.
- The notation $A[0 : 5]$ is zero based, i.e., the first bit in \vec{A} is $A[0]$. Therefore, the third bit of \vec{A} is $A[2]$ (which equals 0).
A basic operation that is applied to strings is called concatenation. Given two strings $A[0 : n - 1]$ and $B[0 : m - 1]$, the concatenated string is a string $C[0 : n + m - 1]$ defined by

$$C[i] \triangleq \begin{cases} A[i] & \text{if } 0 \leq i < n, \\ B[i - n] & \text{if } n \leq i \leq n + m - 1. \end{cases}$$

We denote the operation of concatenating string by \circ, e.g.,
$$\vec{C} = \vec{A} \circ \vec{B}.$$
Examples of concatenation of strings. Let $A[0 : 2] = 111$, $B[0 : 1] = 01$, $C[0 : 1] = 10$, then:

$$\vec{A} \circ \vec{B} = 111 \circ 01 = 11101,$$

$$\vec{A} \circ \vec{C} = 111 \circ 10 = 11110,$$

$$\vec{B} \circ \vec{C} = 01 \circ 10 = 0110,$$

$$\vec{B} \circ \vec{B} = 01 \circ 01 = 0101.$$
Let $i \leq j$. Both $A[i : j]$ and $A[j : i]$ denote the same sequence $\{A_k\}_k^j$. However, when we write $A[i : j]$ as a string, the leftmost bit is $A[i]$ and the rightmost bit is $A[j]$. On the other hand, when we write $A[j : i]$ as a string, the leftmost bit is $A[j]$ and the rightmost bit is $A[i]$.

Example

Definition

The least significant bit of the string $A[i : j]$ is the bit $A[k]$, where $k \triangleq \min\{i, j\}$. The most significant bit of the string $A[i : j]$ is the bit $A[\ell]$, where $\ell \triangleq \max\{i, j\}$.

The abbreviations LSB and MSB are used to abbreviate the least significant bit and the most significant bit, respectively.
The least significant bit (LSB) of $A[0 : 3] = 1100$ is $A[0] = 1$. The most significant bit (MSB) of \vec{A} is $A[3] = 0$.

The least significant and most significant bits are determined by the indexes. In our convention, it is not the case that the LSB is always the leftmost bit. Namely, if $i \leq j$, then LSB in $A[i : j]$ is the leftmost bit, whereas in $A[j : i]$, the leftmost bit is the MSB.
We are now ready to define the binary number represented by a string $A[n - 1 : 0]$.

Definition

The natural number, a, represented in binary representation by the binary string $A[n - 1 : 0]$ is defined by

$$a \triangleq \sum_{i=0}^{n-1} A[i] \cdot 2^i.$$

In binary representation, each bit has a **weight** associated with it. The weight of the bit $A[i]$ is 2^i.
Consider a binary string $A[n - 1 : 0]$. We introduce the following notation:

$$\langle A[n - 1 : 0]\rangle \triangleq \sum_{i=0}^{n-1} A[i] \cdot 2^i.$$

To simplify notation, we often denote strings by capital letters (e.g., A, B, S) and we denote the number represented by a string by a lowercase letter (e.g., a, b, and s).
Consider the strings: \(A[2 : 0] \triangleq 000\), \(B[3 : 0] \triangleq 0001\), and \(C[3 : 0] \triangleq 1000\). The natural numbers represented by the binary strings \(A\), \(B\) and \(C\) are as follows.

\[
= 0 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 = 0,
\]
\[
= 1 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 + 0 \cdot 2^3 = 1,
\]
\[
\langle C[3 : 0]\rangle = C[0] \cdot 2^0 + C[1] \cdot 2^1 + C[2] \cdot 2^2 + C[3] \cdot 2^3
= 0 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 = 8.
\]
Consider a binary string $A[n - 1 : 0]$. Extending \vec{A} by leading zeros means concatenating zeros in indexes higher than $n - 1$. Namely,

1. extending the length of $A[n − 1 : 0]$ to $A[m − 1 : 0]$, for $m > n$, and

2. defining $A[i] = 0$, for every $i \in [m − 1 : n]$.
The following lemma states that extending a binary string by leading zeros does not change the number it represents in binary representation.

Lemma

Let $m > n$. If $A[m - 1 : n]$ is all zeros, then

$$\langle A[m - 1 : 0] \rangle = \langle A[n - 1 : 0] \rangle.$$

Example

Consider $C[6 : 0] = 0001100$ and $D[3 : 0] = 1100$. Note that $\langle C \rangle = \langle D \rangle = 12$. Since the leading zeros do not affect the value represented by a string, a natural number has infinitely many binary representations.
The following lemma bounds the value of a number represented by a \(k \)-bit binary string.

Lemma

Let \(A[k - 1 : 0] \) denote a \(k \)-bit binary string. Then,

\[
0 \leq \langle A[k - 1 : 0] \rangle \leq 2^k - 1.
\]

What is the largest number representable by the following number of bits: (i) 8 bits, (ii) 10 bits, (iii) 16 bits, (iv) 32 bits, and (v) 64 bits?
Fix \(k \) the number of bits (i.e., length of binary string).

Goals:

1. show how to compute a binary representation of a natural number using \(k \) bits.

2. prove that every natural number in \([0, 2^k - 1]\) has a unique binary representation that uses \(k \) bits.
Algorithm $BR(x, k)$ for computing a binary representation is specified as follows:

Inputs: $x \in \mathbb{N}$ and $k \in \mathbb{N}^+$, where x is a natural number for which a binary representation is sought, and k is the length of the binary string that the algorithm should output.

Output: The algorithm outputs “fail” or a k-bit binary string $A[k - 1 : 0]$.

Functionality: The relation between the inputs and the output is as follows:

1. If $0 \leq x < 2^k$, then the algorithm outputs a k-bit string $A[k - 1 : 0]$ that satisfies $x = \langle A[k - 1 : 0] \rangle$.
2. If $x \geq 2^k$, then the algorithm outputs “fail”.
Algorithm 1 \(BR(x, k) \) - An algorithm for computing a binary representation of a natural number \(a \) using \(k \) bits.

1. **Base Cases:**
 1. If \(x \geq 2^k \) then return (fail).
 2. If \(k = 1 \) then return \((x)\).

2. **Reduction Rule:**
 1. If \(x \geq 2^{k-1} \) then return \((1 \circ BR(x - 2^{k-1}, k - 1))\).
 2. If \(x \leq 2^{k-1} - 1 \) then return \((0 \circ BR(x, k - 1))\).

Example: execution of \(BR(2, 1) \) and \(BR(7, 3) \)

Theorem

If \(x \in \mathbb{N} \), \(k \in \mathbb{N}^+ \), and \(x < 2^k \), then algorithm \(BR(x, k) \) returns a \(k \)-bit binary string \(A[k - 1 : 0] \) such that \(\langle A[k - 1 : 0] \rangle = x \).
corollary

Every positive integer x has a binary representation by a k-bit binary string if $k > \log_2(x)$.

Proof.

$BR(x, k)$ succeeds if $x < 2^k$. Take a log:

$$\log_2(x) < k.$$
Theorem (unique binary representation)

The binary representation function

$$\langle \rangle_k : \{0, 1\}^k \rightarrow \{0, \ldots, 2^k - 1\}$$

defined by

$$\langle A[k - 1 : 0]\rangle_k \triangleq \sum_{i=0}^{k-1} A[i] \cdot 2^i$$

is a bijection (i.e., one-to-one and onto).

Proof.

1. $$\langle \rangle_k$$ is onto because $$\langle BR(x, k)\rangle_k = x.$$
2. $$|\text{Domain}| = |\text{Range}|$$ implies that $$\langle \rangle_k$$ is one-to-one.
We claim that when a natural number is multiplied by two, its binary representation is “shifted left” while a single zero bit is padded from the right. That property is summarized in the following lemma.

Lemma

Let $a \in \mathbb{N}$. Let $A[k - 1 : 0]$ be a k-bit string such that $a = \langle A[k - 1 : 0] \rangle$. Let $B[k : 0] \overset{\triangle}{=} A[k - 1 : 0] \circ 0$, then

$$2 \cdot a = \langle B[k : 0] \rangle.$$

Example

$$\langle 1000 \rangle = 2 \cdot \langle 100 \rangle = 2^2 \cdot \langle 10 \rangle = 2^3 \cdot \langle 1 \rangle = 8.$$